MATHEMATICAL METHODS

Standard Level

Wednesday 5 May 1999 (morning)

Paper 2

2 hours

This examination paper consists of 2 sections, Section A and Section B. Section A consists of 4 questions.

Section B consists of 2 questions.

The maximum mark for Section A is 80.

The maximum mark for Section B is 40.

The maximum mark for this paper is 120.

INSTRUCTIONS TO CANDIDATES

Do NOT open this examination paper until instructed to do so.

Answer all FOUR questions from Section A and one question from Section B.

Unless otherwise stated in the question, all numerical answers must be given exactly or to three significant figures as appropriate.

EXAMINATION MATERIALS

Required: IB Statistical Tables Millimetre square graph paper Calculator Ruler and compasses

Allowed:

A simple translating dictionary for candidates not working in their own language

229-291

FORMULAE

Sine rule:
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine rule:
$$a^2 = b^2 + c^2 - 2bc \cos A$$

Arithmetic series:
$$S_n = \frac{n}{2} \{2a + (n-1)d\}$$

Geometric series:
$$S_n = \frac{a(r^n - 1)}{r - 1}$$
, $r \neq 1$

Arc length of a circle:
$$s = r\theta$$

Area of a sector of a circle:
$$A = \frac{1}{2}r^2\theta$$

Area of a triangle:
$$A = \frac{1}{2} ab \sin C$$

Statistics: If
$$(x_1, x_2, ..., x_n)$$
 occur with frequencies $(f_1, f_2, ..., f_n)$ then the mean m and standard deviation s are given by

$$m = \frac{\sum f_i x_i}{\sum f_i} \qquad s = \sqrt{\frac{\sum f_i (x_i - m)^2}{\sum f_i}}, \qquad i = 1, 2, ..., n$$

Newton-Raphson formula: (For finding a root of
$$f(x) = 0$$
)

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Integration by parts: (Analytical Geometry and Further Calculus Option only)

$$\int u \frac{\mathrm{d}v}{\mathrm{d}x} \, \mathrm{d}x = uv - \int v \frac{\mathrm{d}u}{\mathrm{d}x} \, \mathrm{d}x$$

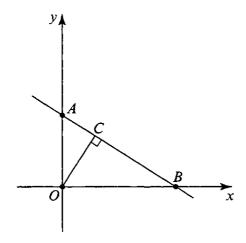
A correct answer with **no** indication of the method used will normally receive **no** marks. You are therefore advised to show your working.

SECTION A

Answer all FOUR questions from this section.

1. [Maximum mark: 16]

The line (AB) has equation 3x + 4y - 15 = 0. The point O is the origin.



(a) Find

(i) the coordinates of points A and B;

[3 marks]

(ii) the area of triangle OAB;

[2 marks]

(iii) the length AB.

[2 marks]

The line (OC) is perpendicular to (AB).

(b) Using the results above, or otherwise, find

(i) the length OC;

[3 marks]

(ii) the area of triangle OCB;

[4 marks]

(iii) the length AC.

[2 marks]

2. [Maximum mark: 24]

The function f is given by

$$f(x) = \frac{2x+1}{x-3}$$
, $x \in \mathbb{R}$, $x \neq 3$.

- (a) (i) Show that y = 2 is an asymptote of the graph of y = f(x). [2 marks]
 - (ii) Find the vertical asymptote of the graph. [1 mark]
 - (iii) Write down the coordinates of the point P at which the asymptotes intersect.

 [1 mark]
- (b) Find the points of intersection of the graph and the axes. [4 marks]
- (c) Hence sketch the graph of y = f(x), showing the asymptotes by dotted lines. [4 marks]
- (d) Show that $f'(x) = \frac{-7}{(x-3)^2}$ and hence find the equation of the tangent at the point S where x = 4.
- (e) The tangent at the point T on the graph is parallel to the tangent at S.

 Find the coordinates of T.

 [5 marks]
- (f) Show that P is the midpoint of [ST]. [1 mark]

3. [Maximum mark: 16]

One thousand candidates sit an examination. The distribution of marks is shown in the following grouped frequency table.

Marks	1–10	11–20	21-30	31-40	41–50	51–60	61–70	71–80	81–90	91–100
Number of candidates	15	50	100	170	260	220	90	45	30	20

(a) Copy and complete the following table, which presents the above data as a cumulative frequency distribution.

[3 marks]

Mark	≤10	€20	€30	≤40	≤50	≤60	€70	≤80	≤90	≤100
Number of candidates	15	65					905			_

(b) Draw a cumulative frequency graph of the distribution, using a scale of 1 cm for 100 candidates on the vertical axis and 1 cm for 10 marks on the horizontal axis.

[5 marks]

- (c) Use your graph to answer parts (i)-(iii) below.
 - (i) Find an estimate for the median score.

[2 marks]

(ii) Candidates who scored less than 35 were required to retake the examination. How many candidates had to retake?

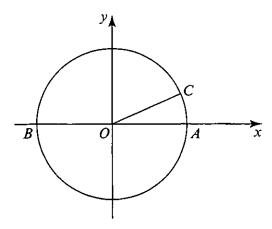
[3 marks]

(iii) The highest-scoring 15% of candidates were awarded a distinction. Find the mark above which a distinction was awarded.

[3 marks]

4. [Maximum mark: 24]

(i) The circle shown has centre O and radius 6. $\overset{\rightarrow}{OA}$ is the vector $\begin{pmatrix} 6 \\ 0 \end{pmatrix}$, $\overset{\rightarrow}{OB}$ is the vector $\begin{pmatrix} -6 \\ 0 \end{pmatrix}$ and $\overset{\rightarrow}{OC}$ is the vector $\begin{pmatrix} 5 \\ \sqrt{11} \end{pmatrix}$.



(a) Verify that A, B and C lie on the circle.

[3 marks]

(b) Find the vector \overrightarrow{AC} .

- [2 marks]
- (c) Using an appropriate scalar product, or otherwise, find the cosine of angle OAC.
- [3 marks]
- (d) Find the area of triangle *ABC*, giving your answer in the form $a\sqrt{11}$, where $a \in \mathbb{N}$.
- [4 marks]

- (ii) Let $M = \begin{pmatrix} a & 2 \\ 2 & -1 \end{pmatrix}$, where $a \in \mathbb{Z}$.
 - (a) Find M^2 in terms of a.

[4 marks]

(b) If M^2 is equal to $\begin{pmatrix} 5 & -4 \\ -4 & 5 \end{pmatrix}$, find the value of a.

- [2 marks]
- (c) Using this value of a, find M^{-1} and hence solve the system of equations:

$$-x + 2y = -3$$
$$2x - y = 3$$

[6 marks]

SECTION B

Answer ONE question from this section.

Analytical Geometry and Further Calculus

- 5. [Maximum mark: 40]
 - (i) The function f is such that f''(x) = 2x 2.

When the graph of f is drawn, it has a minimum point at (3, -7).

(a) Show that $f'(x) = x^2 - 2x - 3$ and hence find f(x).

[6 marks]

(b) Find f(0), f(-1) and f'(-1).

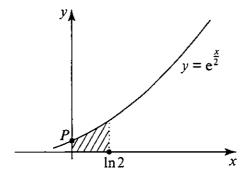
[3 marks]

(c) Hence sketch the graph of f, labelling it with the information obtained in part (b).

[4 marks]

(Note: It is not necessary to find the coordinates of the points where the graph cuts the x-axis.)

(ii) The diagram shows part of the graph of $y = e^{\frac{x}{2}}$.



(a) Find the coordinates of the point P, where the graph meets the y-axis.

[2 marks]

The shaded region between the graph and the x-axis, bounded by x = 0 and $x = \ln 2$, is rotated through 360° about the x-axis.

(b) Write down an integral which represents the volume of the solid obtained.

[4 marks]

(c) Show that this volume is π .

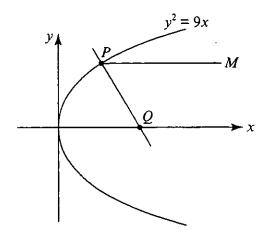
[5 marks]

(This question continues on the following page)

229-291 **Turn over**

(Question 5 continued)

(iii) The parabola shown has equation $y^2 = 9x$.



(a) Verify that the point P(4, 6) is on the parabola.

[2 marks]

The line (PQ) is the normal to the parabola at the point P, and cuts the x-axis at Q.

(b) (i) Find the equation of (PQ) in the form ax + by + c = 0.

[5 marks]

(ii) Find the coordinates of Q.

[2 marks]

S is the point $\left(\frac{9}{4},0\right)$.

(c) Verify that SP = SQ.

[4 marks]

(d) The line (PM) is parallel to the x-axis. From part (c), explain why (QP) bisects the angle SPM.

[3 marks]

Further Probability and Statistics

- **6.** [Maximum mark: 40]
 - (i) A box contains 35 red discs and 5 black discs. A disc is selected at random and its colour noted. The disc is then replaced in the box.
 - (a) In eight such selections, what is the probability that a black disc is selected
 - (i) exactly once?

[3 marks]

(ii) at least once?

[3 marks]

- (b) The process of selecting and replacing is carried out 400 times.
 - (i) What is the expected number of black discs that would be drawn?

[2 marks]

- (ii) Use a normal approximation to the binomial distribution to estimate the probability that a black disc is selected
 - (a) at least 48 times;

[5 marks]

(b) exactly 48 times.

[5 marks]

(ii) A continuous random variable X has the probability density function

$$f(x) = kx$$
, for $0 \le x \le 5$;
= 0, elsewhere.

Find the value of

(a) k;

[4 marks]

(b) E(X);

• [4 marks]

(c) the variance;

[4 marks]

(d) $p(2 \le X \le 3)$;

[4 marks]

(e) the median of X.

[6 marks]